

MODULE SPECIFICATION PROFORMA

Module Title:	Water Engineering		Leve	l:	5	Credit Value:	20	
Module code:		New	✓		Co	Code of module		
	AUR524	Existing			being replaced:			

Cost Centre: GABE	JACS3 code:	H141	
-------------------	-------------	------	--

Trimester(s) in which to be offered:	1, 2	With effect from:	September 16

School:	Applied Science, Computing & Engineering	Module Leader:	Louise Duff
	Engineering	Ebadoli	

Scheduled learning and teaching hours	48 hrs
Guided independent study	152 hrs
Placement	0 hrs
Module duration (total hours)	200 hrs

Programme(s) in which to be offered	Core	Option
BSc Civil Engineering Studies	✓	

Office use only Initial approval August 16 APSC approval of modification *Enter date of approval* Have any derogations received SQC approval?

Version 1 N/A

Module Aims

This module aims to provide an opportunity to develop skills required to solve hydrostatic and flow problems. It also aims to provide students with the opportunity to undertake practical laboratory work and utilise software applications. Students will be provided with an overview of the concepts of sustainable water management.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills	
	Select and apply appropriate analysis to hydrostatic and water	KS1	KS3
1	engineering problems, apply technology and implement engineering processes.	KS4	KS10
	Develop the methodology, practice and reporting of laboratory experiments with particular reference to open channel flow		KS2
2	problems and augment with computer modelling software, relevant to the engineering technology discipline.	KS4	KS10
3	Demonstrate knowledge and application of the concepts	KS1	KS6
	relating to sustainability in water resource engineering to include coastal and river erosion, coastal/river flood defence / flood risk science and management, water and waste water systems and Sustainable Urban Drainage systems.	KS7	KS10
	Ability to monitor, interpret and apply the results of analysis and	KS3	KS4
4	modelling in order to bring about continuous improvement and design solutions according to customer and user needs.	KS10	
5	Demonstrate awareness of the framework of legislation and policies that govern flood risk management and the constraints that guide engineers in developing acceptable sustainable solutions to flood and drainage problems.	KS1	KS6

MODULE SPECIFICATION PROFORMA

Transferable/key skills and other attributes

Analytical competence Problem solving Report Writing Independent learning Presentation skills

Derogations

None

Assessment: Please give details of indicative assessment tasks below.

Assessment 1 will comprise a series of engineering problems to be solved using analytical methods via an in-class test.

Assessment 2 will comprise a report based on aspects of sustainable water management to be delivered via a presentation.

Please indicate the type(s) of assessment (eg examination, oral, coursework, project) and the weighting of each (%). Normally, each intended learning outcome should be assessed only once.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1,2,	In-class test	60%	2hrs	
2	3,4,5	Presentation	40%	15 minutes	

Learning and Teaching Strategies:

Lectures and problem solving sessions will be delivered to provide the underlying knowledge of the subject. Students, in general will work individually but group work will be beneficial for practical laboratory sessions and the use of simulation software. The delivery of this module will be enhanced by site visits, guest lecturers and local flood case studies.

Syllabus outline:

Hydrostatic forces on immersed surfaces and fluid dynamics (forces due to momentum change, conservation of energy - Bernoulli equation)

Analysis relating to pipeline and open channel flow problems. (laminar & turbulent flows, losses in pipe systems, Darcy - Weisbach formula, Reynolds number & variation in pipe friction factor, uniform flow Chezy and Manning equations.)

Laboratory experiments to test the theoretical concepts considered in the module. This will include experiments such as empty channel flow to determine the Manning coefficient and verify Chezy equation, flow through weirs to demonstrate the use of weirs as simple flow regulators, flow under sluice gates and hydraulic jump. Collecting and recording data, analysing data and assessing accuracy and errors, together with consideration of health and safety risks.

MODULE SPECIFICATION PROFORMA

Sustainability in water resource engineering to include coastal and river erosion, coastal/river flood defence / flood management, water and waste water systems and Sustainable Urban Drainage systems - techniques, policy and design.

Flood risk mapping. Flood forecasting, flood warning and communication. Understanding the fundamentals of the modelling process, problem definition, the selection of modelling software, data acquisition and Flood Risk / Consequence Assessments and integration into the Building/ Digital Information Model. Flood resilience and resistance and techniques available to adapt to flooding and climate change.

Roles of Regulatory bodies and funding authorities such as Environment Agency, Natural Resources Wales, Lead Local Flood Authorities and other Risk Management Authorities.

Legislation and policy, River Basin Districts, Catchment Flood Management Plans, Shoreline Management Plans, National and Local Strategies, Flood Risk Regulations, Flood and Water Management Act. Land Drainage Act, Coastal Protection Act etc.

Bibliography:

Essential reading

Ainger, C., Fenner, R., (2016) Sustainable Water, London, ICE Publishing.
Butler, D., Davies, J W., (2011), Urban Drainage, 3rd Edn, Oxon, Spon Press.
Chadwick, A, Morfett, J and Borthwick, M, 2013, Hydraulics in Civil and Environmental Engineering, 5th Edn, London, Spon Press.
Featherstone R.E. and Nalluri C., (2009), Civil Engineering Hydraulics, 5th Edn, Oxford, Wiley-Blackwell.
Watson, D., Adams, M., (2011), Design for Flooding, New Jersey, John Wiley & Sons.
Wynn, P., (2014), Hydraulics for Engineers, London, ICE Publishing.

Other indicative reading

Douglas, J.F., Gasoriek, J.M, Swaffield, J. and Jack, L, (2005), *Fluid Mechanics*, 5th Edn, England, Pitman Publishing Ltd.

Hamil, L., *Understanding Hydraulics* 3rd edition, (2011), ,Basingstoke,Palgrave Macmillan. Holden, J., *Water Resources: An Integrated Approach*, (2014), Oxon, Routledge.

www.ice.org.uk

www.istructe.org.uk www.theihe.org.uk www.ciht.org.uk www.ihsti.com

Other indicative reading will be made available via the VLE.